COEXPEDIA: exploring biomedical hypotheses via co-expressions associated with medical subject headings (MeSH)
نویسندگان
چکیده
The use of high-throughput array and sequencing technologies has produced unprecedented amounts of gene expression data in central public depositories, including the Gene Expression Omnibus (GEO). The immense amount of expression data in GEO provides both vast research opportunities and data analysis challenges. Co-expression analysis of high-dimensional expression data has proven effective for the study of gene functions, and several co-expression databases have been developed. Here, we present a new co-expression database, COEXPEDIA (www.coexpedia.org), which is distinctive from other co-expression databases in three aspects: (i) it contains only co-functional co-expressions that passed a rigorous statistical assessment for functional association, (ii) the co-expressions were inferred from individual studies, each of which was designed to investigate gene functions with respect to a particular biomedical context such as a disease and (iii) the co-expressions are associated with medical subject headings (MeSH) that provide biomedical information for anatomical, disease, and chemical relevance. COEXPEDIA currently contains approximately eight million co-expressions inferred from 384 and 248 GEO series for humans and mice, respectively. We describe how these MeSH-associated co-expressions enable the identification of diseases and drugs previously unknown to be related to a gene or a gene group of interest.
منابع مشابه
Learning Links in MeSH Co-occurrence Network - Preliminary Results
Literature-based discovery (LBD) is focusing on automatically generating scientific hypotheses by uncovering hidden, previously unknown relations between existing knowledge. Co-occurrences between biomedical concepts can be represented by a network that consists of a set of nodes representing concepts and a set of edges representing their relationships. In this work we propose a method for link...
متن کاملLeveraging output term co-occurrence frequencies and latent associations in predicting medical subject headings
Trained indexers at the National Library of Medicine (NLM) manually tag each biomedical abstract with the most suitable terms from the Medical Subject Headings (MeSH) terminology to be indexed by their PubMed information system. MeSH has over 26,000 terms and indexers look at each article's full text while assigning the terms. Recent automated attempts focused on using the article title and abs...
متن کاملTwo Similarity Metrics for Medical Subject Headings (MeSH): An Aid to Biomedical Text Mining and Author Name Disambiguation.
In the present paper, we have created and characterized several similarity metrics for relating any two Medical Subject Headings (MeSH terms) to each other. The article-based metric measures the tendency of two MeSH terms to appear in the MEDLINE record of the same article. The author-based metric measures the tendency of two MeSH terms to appear in the body of articles written by the same indi...
متن کاملJournal of Biomedical Discovery and Collaboration Two Similarity Metrics for Medical Subject Headings (MeSH): An Aid to Biomedical Text Mining and Author Name Disambiguation
In the present paper, we have created and characterized several similarity metrics for relating any two Medical Subject Headings (MeSH terms) to each other. The article-based metric measures the tendency of two MeSH terms to appear in the MEDLINE record of the same article. The author-based metric measures the tendency of two MeSH terms to appear in the body of articles written by the same indi...
متن کاملUnsupervised Medical Subject Heading Assignment Using Output Label Co-occurrence Statistics and Semantic Predications
Librarians at the National Library of Medicine tag each biomedical abstract to be indexed by their Pubmed information system with terms from the Medical Subject Headings (MeSH) terminology. The MeSH terminology has over 26,000 terms and indexers look at each article's full text to assign a set of most suitable terms for indexing it. Several recent automated attempts focused on using the article...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 45 شماره
صفحات -
تاریخ انتشار 2017